Filter Results By:

Products

Applications

Manufacturers

Hardware-in-the-Loop

a system's simulation test of embedded controls by the electrical emulation of it's motors, sensors and actuators.

See Also: HIL


Showing results: 121 - 135 of 136 items found.

  • PXI LIN Interface Module

    NI

    The PXI LIN Interface Module is a bus interface for developing applications with the NI-XNET driver. The NI-XNET device-driven DMA engine couples the LIN bus to host memory to minimize message latency. You can import, edit, and use signals from LIN Description File (LDF) databases in integrated LIN databases. PXI LIN Interface Modules work well for applications requiring real-time, high-speed manipulation of many LIN frames and signals, such as hardware-in-the-loop simulation, rapid control prototyping, bus monitoring, and automation control.

  • PXI FlexRay Interface Module

    NI

    PXI FlexRay Interface Modules provide two fully functional FlexRay interfaces, allowing an individual electronic control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. PXI FlexRay Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.

  • LIN Interface Module

    C- Series - NI

    C Series LIN Interface Modules are bus interfaces for developing applications with the NI-XNET driver. The NI-XNET device-driven DMA engine couples the LIN bus to host memory to minimize message latency. You can import, edit, and use signals from LDF databases in integrated LIN databases. C Series LIN Interface Modules work well for applications requiring real-time, high-speed manipulation of many LIN frames and signals, such as hardware-in-the-loop simulation, rapid control prototyping, bus monitoring, and automation control.

  • Vehicle Multiprotocol Interface Device

    NI

    The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.

  • Vehicle Multiprotocol Interface Module

    C Series - NI

    C Series Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑Rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.

  • LIN Interface Module

    C Series LIN - NI

    C Series LIN Interface Modules are bus interfaces for developing applications with the NI-XNET driver. The NI-XNET device-driven DMA engine couples the LIN bus to host memory to minimize message latency. You can import, edit, and use signals from LDF databases in integrated LIN databases. C Series LIN Interface Modules work well for applications requiring real-time, high-speed manipulation of many LIN frames and signals, such as hardware-in-the-loop simulation, rapid control prototyping, bus monitoring, and automation control.

  • FlexRay Interface Device

    NI

    FlexRay Interface Devices provide two fully functional FlexRay interfaces, allowing an individual engine control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. FlexRay Interface Devices work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.

  • Systems Modeling

    Altair Feko

    Altair model-based development (MBD) tools drive fast development for smarter connected systems. Altair customers simulate complex products as systems-of-systems throughout your entire development cycle from early concept design to detailed design to hardware-in-the-loop testing (HIL).

  • Autonomous Vehicle Simulation

    Ansys Corporation

    Ansys Autonomous Vehicle Simulation provides a solution designed specifically to support developing, testing and validating safe automated driving technologies. This autonomous vehicle simulation solution saves significant time and costs versus traditional development and testing methods by allowing you to exercise your AV/ADAS software stack in a closed loop, with sensor-accurate synthetic data in software-in-the-loop or hardware-in-the-loop context with the driving simulator of your choice.

  • *C Series CAN Interface Module

    NI

    C Series CAN Interface Modules communicate using onboard transceivers for High-Speed/Flexible Data‑Rate or Low-Speed/Fault Tolerant CAN. C Series CAN Interface Modules are either compatible with NI-XNET or the NI-985x driver, depending on model.Using NI-XNET, you can create applications that require real-time, high-speed manipulation of hundreds of CAN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series CAN Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.

  • PXI MultiComputing Remote Control Module

    NI

    PXI MultiComputing Remote Control Modules enable PXI systems to transfer data at multigigabytes per second with only a few microseconds of latency. You can use these models in applications such as real-time tests, hardware-in-the-loop (HIL) tests, and structural tests that need a large number of distributed PXI systems to share data with low latency.

  • Digital Reconfigurable I/O Device

    NI

    The Digital Reconfigurable I/O (RIO) Device features user-programmable FPGA for onboard processing and flexible I/O operation. You have complete control over the synchronization and timing of all signals and operations along with custom onboard decision-making that executes with hardware-timed speed and reliability. You can configure user-defined hardware for a wide variety of applications, such as custom digital DAQ, high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, custom digital communications protocols, bit error rate testing, and other applications that require precise timing and control.

  • Test System

    BMS HIL - Bloomy Controls, Inc.

    The BMS Hardware-in-the-Loop (HIL) Test System is a high performance platform providing all necessary input signals used for battery pack simulation. A real-time operating system executes complex cell and pack models commonly used for BMS algorithm development and firmware regression testing.

  • Functional Test

    xUTS - Bloomy Controls, Inc.

    Extend test to encompass copious test points and DUT varieties along with real-time, hardware-in-the-loop and other state-of-the-art instrumentation. extendedUTS (xUTS) is a custom product for high complexity functional test. Configured for the unique needs of a class of devices under test (DUTs), the xUTS employs our universal test system approach that combines the best open platform instrumentation and software along with mass interconnect technology.

Get Help