Filter Results By:
Products
Applications
Manufacturers
- Pickering Interfaces Ltd.
product
PXI Fault Insertion (Fault Injection) Modules
PXI Fault Insertion Units (FIU), also known as Fault Injection switch products, are designed specifically for safety-critical applications where the response of a control system is required to be evaluated when sensor connections behave in unexpected ways. These modules are scalable solutions that can be used to switch signals between simulations and real-life devices in a multitude of hardware-in-the-loop (HIL) simulation and test systems. The fault insertion unit can significantly simplify and accelerate the testing, diagnosis and integration work in HIL applications.
-
product
Connector and Breakout Box
ES4640
The ES4640 Connector Box offers a standardized wiring and connectivity for HiL testing systems in the powertrain domain. Its front panel provides connectors for the ECU, CAN bus communication, on-board diagnostics, and LEDs for ignition and injectors. Its rear panel connects loads, failure simulation, and other components. Sample applications of the ES4640 are closed loop HiL systems for 8 cylinder gasoline and diesel engine ECUs.
-
product
Stackable And Configurable Signal Generator For CAN Applications.
K- Volt
The K-Volt can be used to generate fast configurable analog and digital signals from CAN messages. Designed for high speed and accurate simulation of sensors (For example HIL and Replay systems). The K-Volt can be connected directly to a PC via a USB connection.
-
product
HiL Simulators
NovaCarts Battery
Exact cell simulation for validating battery management systems (BMS). "NovaCarts Battery" represents one of the most powerful and precise cell simulation systems on the market. This is leveraged by the modular and scalable HiL system to create optimum conditions for developing new battery management functions such as state-of-charge (SoC) and state-of-health (SoH) controls, active cell balancing and electrochemical impedance spectroscopy.
-
product
HIL and RCP DFIG Laboratory
This laboratory combines the best of both OPAL-RT and Festo solutions to deliver academic researchers and teachers with the ideal Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) simulation system to conduct experiments and teach in the fields of electrical machinery, power converters and wind energy generation.
-
product
Test System
BMS HIL
The BMS Hardware-in-the-Loop (HIL) Test System is a high performance platform providing all necessary input signals used for battery pack simulation. A real-time operating system executes complex cell and pack models commonly used for BMS algorithm development and firmware regression testing.
-
product
Automotive Simulation Software
DYNA4 Framework
TESIS DYNAware Technische Simulation Dynamischer Systeme GmbH
DYNA4 is a modular simulation software for efficient work with simulation models in the automotive development process, e. g. of electronic control units and components. Model-based design, function development. Testing and pre-calibration in SIL and HIL environments. Fail-safe and functional tests, including evaluation of vehicle response and drivability. Advanced powertrain development and energy management. Fuel efficiency simulation for hybrid (HEV), electric (EV) or traditional vehicles.
-
product
Software Platforms
Discover complete solutions for Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) testing. OPAL-RT offers the most advanced real-time simulation software platforms for power systems, power electronics, aerospace and automotive sectors: RT-LAB (Multi-domain, MATLAB/Simulink® based), HYPERSIM (Power Systems), and NI VeriStand (Automotive).
-
product
Bloomy Simulation Reference System
The Bloomy Simulation Reference System provides a hardware in-the-loop (HIL) test environment for dynamic, closed-loop testing of many aerospace and transportation control systems. The reference system integrates the computing, I/O, and software components needed for standalone use or to form the basis of a more complex test system.
-
product
Multifunction Reconfigurable I/O Device
Multifunction Reconfigurable I/O Devices feature a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control.
-
product
Systems Modeling
Altair model-based development (MBD) tools drive fast development for smarter connected systems. Altair customers simulate complex products as systems-of-systems throughout your entire development cycle from early concept design to detailed design to hardware-in-the-loop testing (HIL). Explore more by combining mechanical models with electrical models (in 0D, 1D, and/or 3D) to enable multi-disciplinary simulation and leverage automatic code-generation for your next generation embedded systems.
-
product
Vehicle Multiprotocol Interface Device
The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.
-
product
FlexRay Interface Device
FlexRay Interface Devices provide two fully functional FlexRay interfaces, allowing an individual engine control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. FlexRay Interface Devices work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
Simulation Systems
Bloomy offers Simulation Systems for Hardware in-the-Loop (HIL) and open loop test of electronic controls and mechanical actuators for all types of transportation and defense systems including aircraft, rail, automobiles and ships. These systems, now deployed at major aerospace, locomotive and military manufacturers and research facilities worldwide, provide world-class, high-fidelity simulated environments for use in both closed-loop and open-loop testing. Because Bloomy’s Simulation Systems are largely constructed from COTS components, time to first test can be reduced significantly, and their highly-customizable nature allows your test system experts to provide your unique IP to differentiate your product from your competitors.
-
product
FADEC/EEC Test Platform
The FADEC/EEC Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of full-authority digital engine control (FADEC) and electronic engine control (EEC) units of both rotary- and fixed-wing airframes. The system simulates one or more turbofan engines, including its sensors and actuators for use with the most sophisticated FADECs and EECs on the market. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
product
Environmental Control System Test Platform
The Airframe Environmental Control System Test Platform provides a hardware-in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of cockpit and cabin environmental control systems for airframes. The system simulates a military or commercial airframe cabin, including sensors and actuators from the control system and the passengers. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation systems.
-
product
Digital Reconfigurable I/O Device
The Digital Reconfigurable I/O (RIO) Device features user-programmable FPGA for onboard processing and flexible I/O operation. You have complete control over the synchronization and timing of all signals and operations along with custom onboard decision-making that executes with hardware-timed speed and reliability. You can configure user-defined hardware for a wide variety of applications, such as custom digital DAQ, high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, custom digital communications protocols, bit error rate testing, and other applications that require precise timing and control.
-
product
Flight Control System Test Platform
The Flight Control System Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of Flight Control Systems (FCS) of both commercial and military aircraft. The system simulates control surface activities from multiple combinations of rudder, flaps, elevator, aileron, and engine controls to the FCS. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
product
PXI FlexRay Interface Module
PXI FlexRay Interface Modules provide two fully functional FlexRay interfaces, allowing an individual electronic control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. PXI FlexRay Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PXI Digital Reconfigurable I/O Module
PXI Digital Reconfigurable I/O Modules feature a user-programmable FPGA for onboard processing and flexible I/O operation. You can completely control the synchronization and timing of all signals and operations along with custom onboard decision making. The PXI Digital Reconfigurable I/O Module is suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, custom communications protocols, bit error rate testing, and other applications requiring precise timing and control.
-
product
PXI Vehicle Multiprotocol Interface Module
PXI Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. PXI Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
NI-9866, 1-Port C Series LIN Interface Module
781963-01
1-Port C Series LIN Interface Module—The NI‑9866 is a Local Interconnect Network (LIN) interface for developing applications with the NI‑XNET driver. The NI‑9866 excels in applications requiring real-time, high-speed manipulation of hundreds of LIN frames and signals such as hardware‑in‑the‑loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. You can perform this manipulation while taking other DAQ measurements in the same CompactDAQ hardware platform or while performing low-level FPGA control and embedded monitoring in the same CompactRIO Chassis.
-
product
*C Series CAN Interface Module
C Series CAN Interface Modules communicate using onboard transceivers for High-Speed/Flexible Data‑Rate or Low-Speed/Fault Tolerant CAN. C Series CAN Interface Modules are either compatible with NI-XNET or the NI-985x driver, depending on model.Using NI-XNET, you can create applications that require real-time, high-speed manipulation of hundreds of CAN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series CAN Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
Vehicle Multiprotocol Interface Module
C Series
C Series Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑Rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PCI-7813, 3M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779370-01
The PCI‑7813 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7813 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
PCI-7811, 1M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779363-01
The PCI‑7811 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7811 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
PXI Multifunction Reconfigurable I/O Module
PXI Multifunction Reconfigurable I/O Modules feature a dedicated analog-to-digital converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. You can customize these models with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control. PXI Express models also include peer-to-peer streaming for direct data transfer to other PXI Express models.
-
product
sbRIO-9866, Non-Enclosed, 1-Port C Series LIN Interface Module
785965-01
Non-Enclosed, 1-Port C Series LIN Interface Module—The sbRIO‑9866 is a Local Interconnect Network (LIN) interface for developing applications with the NI‑XNET driver. The sbRIO‑9866 excels in applications requiring real-time, high-speed manipulation of hundreds of LIN frames and signals such as hardware‑in‑the‑loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. You can perform this manipulation while taking other DAQ measurements in the same CompactDAQ hardware platform or while performing low-level FPGA control and embedded monitoring in the same CompactRIO Chassis. Non-enclosed modules are designed for OEM applications.
-
product
PCIe-7820, Kintex 7 160T FPGA Digital Reconfigurable I/O Device
785361-01
The PCIe‑7820 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7820 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
PCIe-7822, Kintex 7 325T FPGA, Digital Reconfigurable I/O Device
785360-01
The PCIe‑7822 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7822 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.