Filter Results By:

Products

Applications

Manufacturers

Simulation

the approximation of actual operational conditions.

See Also: Simulators, Simulation Software, Simulation Testing, Modelling, Emulation


Showing results: 1336 - 1350 of 1459 items found.

  • PCI-8517, 2-Port FlexRay Interface Device

    780685-02 - NI

    2-Port FlexRay Interface Device—The PCI‑8517 is designed for developing FlexRay applications. As part of the NI‑XNET platform, the PXI‑8517 works well in applications requiring real-time, high-speed manipulation of hundreds of FlexRay frames and signals, such as hardware‑in‑the‑loop simulation, rapid control prototyping, bus monitoring, automation control, and more. The PCI‑8517 contains two fully functional FlexRay interfaces, allowing an individual engine control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface.

  • PCI-8511, 1‑Port, Low‑Speed/Fault-Tolerant CAN Interface Device

    780682-01 - NI

    1‑ or 2-Port, Low‑Speed/Fault-Tolerant CAN Interface Device—The PCI‑8511 is a fault-tolerant controller area network (CAN) interface for developing applications with the NI‑XNET driver. The PCI‑8511 excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals such as hardware‑in‑the‑loop simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI‑XNET device‑driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.

  • PCIe-7822, Kintex 7 325T FPGA, Digital Reconfigurable I/O Device

    785360-01 - NI

    The PCIe‑7822 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7822 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.

  • PCIe-7821, Kintex 7 FPGA, Digital Reconfigurable I/O Device

    785359-01 - NI

    The PCIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.

  • USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783201-01 - NI

    Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783201-02 - NI

    Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7856, Kintex-7 160T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device

    782916-01 - NI

    Kintex-7 160T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device - The USB‑7856 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7856 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • Enhanced Time Domain Analysis With TDR

    S96011B - Keysight Technologies

    Use S96011B to perform enhanced time domain analysis for high-speed data applications. Includes all functionality of the S96010B (TDR/TDT mode). In addition, the S96011B enables more detailed measurements and evaluations, such as eye diagram / mask modes, without adding PLTS software. Jitter and emphasis / equalization capabilities enable simulation of real-world signals and environment. The S96011B covers up to 53 GHz bandwidth. Full calibration is available and the automatic deskew ensures easy removal of fixture and probe effects. To get the best accuracy, use mechanical calibration kits or ECal with DC option (i.e. N469xD or N4433D with Option 0DC).

  • PXI-8511, 1‑ or 2-Port, Low-Speed/Fault Tolerant PXI CAN Interface Module

    780686-02 - NI

    1‑ or 2-Port, Low-Speed/Fault Tolerant PXI CAN Interface Module—The PXI‑8511 is a fault-tolerant Controller Area Network (CAN) interface for developing applications with the NI‑XNET driver. The PXI‑8511 excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware‑in‑the‑loop simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI‑XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimize message latency and freeing host processor time for processing complex models and applications.

  • PXI-8511, 1‑ or 2-Port, Low-Speed/Fault Tolerant PXI CAN Interface Module

    780686-01 - NI

    1‑ or 2-Port, Low-Speed/Fault Tolerant PXI CAN Interface Module—The PXI‑8511 is a fault-tolerant Controller Area Network (CAN) interface for developing applications with the NI‑XNET driver. The PXI‑8511 excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware‑in‑the‑loop simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI‑XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimize message latency and freeing host processor time for processing complex models and applications.

  • PCIe-7842, Virtex-5 LX50 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device

    781101-01 - NI

    Virtex-5 LX50 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7842 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7842 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXI Millivolt Thermocouple Simulators

    Series 41-760 - Pickering Interfaces Ltd.

    This series of PXI Thermocouple Simulator Modules is available in a choice of 32, 24, 16 or 8 channelseach channel providing a low-voltage output across two connector pins capable of providing 20mV with 0.7V resolution, 50mV with 1.7V resolution and 100mV with 3.3V resolution, covering most thermocouple types. These thermocouple simulators use two wire outputs with a remote output reference sense to ensure the modules deliver accurate low-level voltages, even if the system has common mode voltages present. In addition, each simulation channel is also able to provide an open circuit setting to simulate faulty wiring connections to a sensor.

  • Enhanced Time-Domain Analysis With TDR

    S95011B - Keysight Technologies

    This application enables the analyzer to perform enhanced time domain analysis for high-speed data applications. All functionality of the S95010B are included (TDR/TDT mode). In addition, the S95011B enables more detailed measurements and evaluations, such as eye-diagram / mask modes, without adding PLTS software. Jitter and emphasis / equalization capabilities enable simulation of real-world signals and environment. The S95011B covers up to 53 GHz bandwidth. Full calibration is available and the automatic deskew ensures easy removal of fixture and probe effects. To get the best accuracy, mechanical calibration kits or ECal with DC option (i.e., N469xD or N4433D with Option 0DC) are recommended.

  • PCIe-7841, Virtex-5 LX30 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device

    781100-01 - NI

    Virtex-5 LX30 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7841 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7841 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXI-8517, 2-Port PXI FlexRay Interface Module

    780689-02 - NI

    2-Port PXI FlexRay Interface Module—The PXI‑8517 is designed for developing FlexRay applications. As part of the NI‑XNET platform, the PXI‑8517 works well in applications requiring real-time, high-speed manipulation of hundreds of FlexRay frames and signals, such as hardware‑in‑the‑loop simulation, rapid control prototyping, bus monitoring, automation control, and more. The PXI‑8517 contains two fully functional FlexRay interfaces, allowing an individual ECU to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface.

Get Help